Pages

Sekuriti Sistem Komputer

Rabu, 11 Juli 2018

Sekuriti Sistem Komputer

Pembahasan kali ini saya akan membahas tentang sistem keamanan komputer. Adapun pembahasan dalam penulisan ini antara lain lingkup sekuriti, aspek ancaman, enkripsi, dan metode apa saja yang digunakan dalam sekuriti sistem komputer.
Sistem Keamanan Komputer
Sistem adalah suatu sekumpulan elemen atau unsur yang saling berkaitan dan memiliki tujuan yang sama. Keamanan adalah suatu kondisi yang terbebas dari resiko. Komputer adalah suatu perangkat yang terdiri dari software dan hardware serta dikendalikan oleh brainware (manusia). Dan jika ketiga kata ini dirangkai maka akan memiliki arti suatu sistem yang mengkondisikan komputer terhindar dari berbagai resiko.
Keamanan komputer adalah suatu cabang teknologi yang dikenal dengan nama keamanan informasi yang diterapkan pada komputer. Sasaran keamanan komputer antara lain adalah sebagai perlindungan informasi terhadap pencurian atau korupsi, atau pemeliharaan ketersediaan, seperti dijabarkan dalam kebijakan keamanan.
Selain itu, sistem keamanan komputer bisa juga berarti suatu cabang teknologi yang dikenal dengan nama keamanan informasi yang diterapkan pada komputer. Sasaran keamanan komputer antara lain adalah sebagai perlindungan informasi terhadap pencurian atau korupsi, atau pemeliharaan ketersediaan, seperti dijabarkan dalam kebijakan keamanan.
Menurut John D. Howard dalam bukunya “An Analysis of security incidents on the internet” menyatakan bahwa : Keamanan komputer adalah tindakan pencegahan dari serangan pengguna komputer atau pengakses jaringan yang tidak bertanggung jawab.
Sedangkan menurut Gollmann pada tahun 1999 dalam bukunya “Computer Security” menyatakan bahwa : Keamanan komputer adalah berhubungan dengan pencegahan diri dan deteksi terhadap tindakan pengganggu yang tidak dikenali dalam system komputer.
Dalam keamanan sistem komputer yang perlu kita lakukan adalah untuk mempersulit orang lain mengganggu sistem yang kita pakai, baik kita menggunakan komputer yang sifatnya sendiri, jaringan local maupun jaringan global. Harus dipastikan system bisa berjalan dengan baik dan kondusif, selain itu program aplikasinya masih bisa dipakai tanpa ada masalah.
Menurut Garfinkel dan Spafford, ahli dalam computer security, komputer dikatakan aman jika bisa diandalkan dan perangkat lunaknya bekerja sesuai dengan yang diharapkan.
  1. Lingkup Sekuriti dalam Sistem Komputer
Lingkup keamanan adalah sisi-sisi jangkauan keamanan komputer yang bisa dilakukan. Lingkup keamanan terdiri dari :
A. Pengamanan secara fisik
Contoh pengamanan secara fisik dapat dilakukan yaitu : wujud komputer yang bisa dilihat dan diraba (misal : monitor, CPU, keyboard, dan lain-lain). Menempatkan sistem komputer pada tempat atau lokasi yang mudah diawasi dan dikendalikan, pada ruangan tertentu yang dapat dikunci dan sulit dijangkau orang lain sehingga tidak ada komponen yang hilang. Selain itu dengan menjaga kebersihan ruangan, hindari ruangan yang panas, kotor dan lembab,Ruangan tetap dingin jika perlu ber-AC tetapi tidak lembab.
B. Pengamanan akses
Pengamanan akses dilakukan untuk PC yang menggunakan sistem operasi lagging (penguncian) dan sistem operasi jaringan. Tujuannya untuk mengantisipasi kejadian yang sifatnya disengaja atau tidak disengaja, seperti kelalaian atau keteledoran pengguna yang seringkali meninggalkan komputer dalam keadaan masih menyala atau jika berada pada  jaringan komputer masih berada dalam logon user . Pada komputer jaringan pengamanan komputer adalah tanggungjawab administrator yang mampun mengendalikan dan mendokumentasi seluruh akses terhadap sistem komputer dengan baik.
C. Pengamanan data
Pengamanan data dilakukan dengan menerapkan sistem tingkatan atau hierarki akses dimana seseorang hanya dapat mengakses data tertentu saja yang menjadi haknya. Untuk data yang sifatnya sangat sensitif dapat menggunakan  password (kata sandi).
D. Pengamanan komunikasi jaringan
Pengamanan komunikasi jaringan dilakukan dengan menggunakan kriptografi dimana data yang sifatnya sensitif di-enkripsi atau disandikan terlebih dahulu sebelum ditransmisikan melalui jaringan tersebut.
  1. Aspek Ancaman terhadap Sekuriti
Keamanan sistem komputer meliputi beberapa aspek, antara lain :
A. Privacy :
adalah sesuatu yang bersifat rahasia (private). Intinya adalah pencegahan agar informasi tersebut tidak diakses oleh orang yang tidak berhak. Contohnya adalah email atau file-file lain yang tidak boleh dibaca orang lain meskipun oleh administrator.
B. Confidentiality :
merupakan data yang diberikan ke pihak lain untuk tujuan khusus tetapi tetap dijaga penyebarannya. Contohnya data yang bersifat pribadi seperti : nama, alamat, no ktp, telpon dan sebagainya.
C. Integrity :
penekanannya adalah sebuah informasi tidak boleh diubah kecuali oleh  pemilik informasi. Terkadang data yang telah terenskripsipun tidak terjaga integritasnya karena ada kemungkinan chapertext dari enkripsi tersebut berubah. Contoh : Penyerangan Integritas ketika sebuah email dikirimkan ditengah jalan disadap dan diganti isinya, sehingga email yang sampai ketujuan sudah berubah.
D. Autentication :
ini akan dilakukan sewaktu user login dengan menggunakan nama user dan passwordnya. Ini biasanya berhubungan dengan hak akses seseorang, apakah dia pengakses yang sah atau tidak.
E. Availability :
aspek ini berkaitan dengan apakah sebuah data tersedia saat dibutuhkan/diperlukan. Apabila sebuah data atau informasi terlalu ketat  pengamanannya akan menyulitkan dalam akses data tersebut. Disamping itu akses yang lambat juga menghambat terpenuhnya aspek availability. Serangan yang sering dilakukan pada aspek ini adalah denial of service (DoS), yaitu penggagalan service sewaktu adanya permintaan data sehingga komputer tidak bisa melayaninya. Contoh lain dari denial of service ini adalah mengirimkan request yang berlebihan sehingga menyebabkan komputer tidak bisa lagi menampung beban tersebut dan akhirnya komputer down.
Adapun bentuk-bentuk ancaman dari sistem keamanan komputer, yaitu :
  • Interupsi (interruption)
Interupsi adalah bentuk ancaman terhadap ketersediaan (availability), dimana data dirusak sehingga tidak dapat digunakan lagi. Perusakan dilakukan berupa :
  1. Perusakan fisik, contohnya : perusakan harddisk, perusakan media penyimpanan lainnya,pemotongan kabel jaringan.
  2. Perusakan nonfisik, contohnya : penghapusan suatu file-file tertentu dari sistem komputer.
  • Intersepsi (interception)
Intersepsi adalah bentuk ancaman terhadap kerahasiaan (secrecy), dimana pihak yang tidak  berhak berhasil mendapat hak akses untuk membaca suatu data atau informasi dari suatu sistem komputer. Tindakan yang dilakukan melalui penyadapan data yang ditransmisikan lewat jalur publik atau umum yang dikenal dengan istilah writetapping dalam wired networking, yaitu jaringan yang menggunakan kabel sebagai media transmisi data.
  • Modifikasi (modifikation)
Modifikasi adalah bentuk ancaman terhadap integritas (integrity), dimana pihak yang tidak  berhak berhasil mendapat hak akses untuk mengubah suatu data atau informasi dari suatu sistem komputer. Data atau informasi yang diubah adalah record  dari suatu tabel pada file database.
  • pabrikasi (fabrication)
Pabrikasi adalah bentuk ancaman terhadap integritas. Tindakan yang dilakukan dengan meniru dan memasukkan suatu objek ke dalam sistem komputer. Objek yang dimasukkan  berupa suatu file maupun record  yang disisipkan pada suatu program aplikasi.
  1. Contoh Enkripsi
Enkripsi adalah proses mengubah atau mengamankan sebuah teks asli atau teks terang menjadi sebuah teks tersandi. Dalam ilmu kriptografi, enkripsi adalah proses untuk mengamankan sebuah informasi agar informasi tersebut tidak dapat dibaca tanpa  pengetahuan khusus. Contoh penggunaan enkripsi yaitu pada tahun 1970an, dimana enkripsi dimanfaatkan sebagai  pengamanan oleh sekretariat pemerintah Amerika Serikat pada domain publik. Namun sekarang enkripsi digunakan pada sistem secara luas, seperti : ATM pada bank, e-commerce,  jaringan telepon bergerak dan lain sebagainya. Enkripsi dapat digunakan untuk tujuan keamanan, tetapi teknik lain masih diperlukan untuk membuat komunikasi yang aman, terutama untuk memastikan integritas dan autentikasi dari sebuah pesan. Contohnya, Message Authentication Code (MAC) atau Digital Signature.
4. Metode
Berdasarkan level, metode pengamanan komputer dibedakan berdasarkan level keamanan, dan disusun seperti piramida, yaitu:
  1. Keamanan Level 0, merupakan keamanan fisik (Physical Security) atau keamanan tingkat awal. Apabila keamanan fisik sudah terjaga maka keamanan di dalam computer juga akan terjaga.
  2. Keamanan Level 1, terdiri dari database security, data security, dan device security. Pertama dari pembuatan database dilihat apakah menggunakan aplikasi yang sudah diakui keamanannya. Selanjutnya adalah memperhatikan data security yaitu pendesainan database, karena pendesain database harus memikirkan kemungkinan keamanan dari database. Terakhir adalah device security yaitu adalah yang dipakai untuk keamanan dari database tersebut.
  3. Keamanan Level 2, yaitu keamanan dari segi keamanan jaringan. Keamanan ini sebagai tindak lanjut dari keamanan level 1.
  4. Keamanan Level 3, merupakan information security. Informasi – informasi seperti kata sandi yang dikirimkan kepada teman atau file – file yang penting, karena takut ada orang yang tidak sah mengetahui informasi tersebut.
  5. Keamanan Level 4, keamanan ini adalah keseluruhan dari keamanan level 1 sampai level 3. Apabila ada satu dari keamanan itu tidak terpenuhi maka keamanan level 4 juga tidak terpenuhi.
Berdasarkan sistem, metode pengamanan komputer terbagi dalam beberapa bagian antara lain :
  • Network Topology
Sebuah jaringan komputer dapat dibagi atas kelompok jaringan eksternal (Internet atau pihak luar) kelompok jaringan internal dan kelompok jaringan eksternal diantaranya disebut DeMilitarized Zone (DMZ). – Pihak luar : Hanya dapat berhubungan dengan host-host yang berada pada jaringan DMZ, sesuai dengan kebutuhan yang ada. – Host-host pada jaringan DMZ : Secara default dapat melakukan hubungan dengan host-host pada jaringan internal. Koneksi secara terbatas dapat dilakukan sesuai kebutuhan. – Host-host pada jaringan Internal : Host-host pada jaringan internal tidak dapat melakukan koneksi ke jaringan luar, melainkan melalui perantara host pada jaringan DMZ, sehingga pihak luar tidak mengetahui keberadaan host-host pada jaringan komputer internal.
  • Security Information Management
Salah satu alat bantu yang dapat digunakan oleh pengelola jaringan komputer adalah Security Information Management (SIM). SIM berfungsi untuk menyediakan seluruh informasi yang terkait dengan pengamanan jaringan komputer secara terpusat. Pada perkembangannya SIM tidak hanya berfungsi untuk mengumpulkan data dari semua peralatan keamanan jaringan komputer tapi juga memiliki kemampuan untuk analisis data melalui teknik korelasi dan query data terbatas sehingga menghasilkan peringatan dan laporan yang lebih lengkap dari masing-masing serangan. Dengan menggunakan SIM, pengelola jaringan komputer dapat mengetahui secara efektif jika terjadi serangan dan dapat melakukan penanganan yang lebih terarah, sehingga organisasi keamanan jaringan komputer tersebut lebih terjamin.
  • IDS / IPS
Intrusion detection system (IDS) dan Intrusion Prevention system (IPS) adalah sistem yang digunakan untuk mendeteksi dan melindungi sebuah sistem keamanan dari serangan pihak luar atau dalam. Pada IDS berbasiskan jaringan komputer , IDS akan menerima kopi paket yang ditujukan pada sebuah host untuk selanjutnya memeriksa paket-paket tersebut. Jika ditemukan paket yang berbahaya, maka IDS akan memberikan peringatan pada pengelola sistem. Karena paket yang diperiksa adalah salinan dari paket yang asli, maka jika ditemukan paket yang berbahaya maka paket tersebut akan tetap mancapai host yang ditujunya.Sebuah IPS bersifat lebih aktif daripada IDS. Bekerja sama dengan firewall, sebuah IPS dapat memberikan keputusan apakah sebuah paket dapat diterima atau tidak oleh sistem. Apabila IPS menemukan paket yang dikirimkan adalah paket berbahaya, maka IPS akan memberitahu firewall sistem untuk menolak paket data itu. Dalam membuat keputusan apakah sebuah paket data berbahaya atau tidak, IDS dan IPS dapat memnggunakan metode
  • Signature based Intrusion Detection System : Telah tersedia daftar signature yang dapat digunakan untuk menilai apakah paket yang dikirimkan berbahaya atau tidak.
  • Anomaly based Intrusion Detection System : Harus melakukan konfigurasi terhadap IDS dan IPS agar dapat mengetahui pola paket seperti apa saja yang akan ada pada sebuah sistem jaringan komputer. Paket anomaly adalah paket yang tidak sesuai dengan kebiasaan jaringan komputer tersebut.
  • Port Scanning
Metode Port Scanning biasanya digunakan oleh penyerang untuk mengetahui port apa saja yang terbuka dalam sebuah sistem jaringan komputer. Cara kerjanya dengan cara mengirimkan paket inisiasi koneksi ke setiap port yang sudah ditentukan sebelumnya. Jika port scanner menerima jawaban dari sebuah port, maka ada aplikasi yang sedang bekerja dan siap menerima koneksi pada port tersebut.
  • Packet Fingerprinting
Dengan melakukan packet fingerprinting, kita dapat mengetahui peralatan apa saja yang ada dalam sebuah jaringan komputer. Hal ini sangat berguna terutama dalam sebuah organisasi besar di mana terdapat berbagai jenis peralatan jaringan komputer serta sistem operasi yang digunakan.



Read more ...

OSI LAYER

Jumat, 08 Juni 2018
1. Apa itu Osi Layer?
Osi adalah standar komunikasi yang diterapkan didalam jaringan komputer. Standar itulah yang menyebabkan seluruh alat komunikasi dapat saling berkomunikasi melalui jaringan. Model refensi OSI (Open System Interconnection) menggambarkan bagaimana informasi dari suatu software aplikasi di sebuah komputer berpindah melewati sebuah media jaringan ke suatu software aplikasi di komputer lain. Model referensi OSI secara konseptual terbagi menjadi 7 lapisan dimana masing-masing lapisan memiliki fungsi jaringan yang spesifik. Model Open System  Interconnection (OSI) diciptakan oleh International Organization For Standardization (ISO) yang menyediakan kerangka logika terstruktur bagaimana proses komunikasi data berinteraksi melalui jaringan. Standar ini dikembangkan untuk industri komputer agar komputer dapat berkomunikasi pada jaringan yang berbada secara koefisien.

2. 7 layer yang dimiliki Physical Layer

Pada prosesnya model OSI dibagi menjadi tujuh layer yang mana tiap layer tersebut memiliki peran yang saling terkait antara layer diatas dengan layer yang dibawahnya.

3.  Mauk ke dalam layer berapa Physical Layer
Physical Layer merupakan layer pertama atau yang terendah dari model OSI. Layer ini bertanggung jawab untuk mentransmisikan bit data digital dari physical layer perangkat pengirim (sumber) menuju ke physical layer perangkat penerima (tujuan) melalui media komunikasi jaringan.

4. Physical Layer

            Physical Layer merupakan layar pertama atau yang terendah dari model OSI. Layer ini bertanggung jawab untuk mentransmisikan bit data digital dari physical layer perangkat pengirim (sumber) menuju ke physical layer perangkat penerima (tujuan) melalui media komunikasi jaringan.
Pada Physical Layer data ditransmisikan menggunakan jenis sinyal yang didukung oleh media fisik, seperti tegangan listrik, kabel, frekuensi radio atau infrared maupun cahaya biasa. Pada lapisan ini berfungsi dalam pegiriman raw bit ke channel komunikasi. Masalah desain yang harus diperhatikan disini adalah memastikan bahwa bila satus sisi menirim data 1 bit, data tersebut harus diterima oleh sisi lainya sebagai 1 bit pula, dan bukan 0 bit. Lapisan ini memiliki tugas untukmengatur sinkronsasi pengirim dan penerima data, spesifikasi mekanis dan elektris, menerapkan prosedur ntuk membangun, mengirim data/informasi dalam bentuk digit biner, memelihara dan memutuskan hubungan komunikasi. pada physical layer terdapat perangkat keras dasar jaringan yang terdiri dari atas Repeater, Multiplexer, Hubs (Pasive and Active), Oscilloscope dan Amplifier. 

·     Repeater (satelit) memiliki tugas sebagai penerima sinyal dan mengirimkannya kembali k receiver.
·         Multiplexer merupakan media untuk menjalankan multipleks yaitu menggabungkan beberapa sinyal untuk dikirim secara bersamaan dalam suatu kanal tranmisi.
·         Osiloskop adalah sebuah alat untuk menampilkan bentuk gelombang atau sinyal pada sebuah monitor.
·         Hubs berfungsi untuk menggabungkan beberapa komputer menjadi satu buah kelompok jaringan.
·         Amplifier adalah perangkat yang berfungsi sebagai penguat sinyal.
Media-media fisik tersebut terjadi perpindahan arus bit yang melibatkan sinyal-sinyal digital. Dalam pengirimannya harus terjadi kesamaan dalam nilai bit. Apabilamengirim data 1 bit, data tersebut harus diterima oleh sisi lainnya sebagai 1 bit pula, dan bukan 0 bit. Oleh karena level tegangan dalam pengiriman harus tetap sama dan terjaga hingga pengiriman selesai.
Daftar protokol pada layer ini adalah :
·          Jaringan telepon modem – V.92
·         IRDA Physical Layer
·         USB Physical Layer
·         EIA RS-232, EIA-242, EIA-422, RS-449, RS-485
·         Ethernet Physical layer termasuk 10BASE-T, 10Base5, 100BASE-FX, 100BASE-T,
·         1000BASE-T, 1000BASE-SX dan varietas lainnya
·         Varietas 802.11 Wi-Fi physical layer
·         DSL
·         ISDN
            Perangkat yang digunakan pada layer ini adalah :
·         Network Adapter
·         Repeater
·         Modem
·         Fiber Media Converter
Pada lapisan pertama inilah terjadi hubungan secara fisik antara satu terminal dengan terminal lain atau server atau peripheral lainnya. Pada sisi pengirim, lapisan phisik menerapkan fungsi elektris mekanis dan prosedur untuk membangun, memelihara dan melepaskan sirkuit kommunikasi guna mentransmisikan informasi dalam bentuk digit biner ke sisi penerima, sedangkan lapisan fisik pada penerima akan menerima data dan mentransmisikan data ke lapisan di atasnya. Adapun contoh protokol yang digunakan pada lapisan pertama ini antara lain X21, X21bis, RS232, dan lain sebagainya. X21 memuat ketentuan-ketentuan hubungan secara fisik titik ke titik antar peralatan yang menggunakan teknik digital dala pengiriman ataupun penukaran data.
Pada lapisan pertama inilah terjadi hubungan secara fisik antara satu terminal dengan terminal lain atau server atau peripheral lainnya. Pada sisi pengirim, lapisan phisik menerapkan fungsi elektris mekanis dan prosedur untuk membangun, memelihara dan melepaskan sirkuit kommunikasi guna mentransmisikan informasi dalam bentuk digit biner ke sisi penerima, sedangkan lapisan fisik pada penerima akan menerima data dan mentransmisikan data ke lapisan di atasnya. Adapun contoh protokol yang digunakan pada lapisan pertama ini antara lain X21, X21bis, RS232, dan lain sebagainya. X21 memuat ketentuan-ketentuan hubungan secara fisik titik ke titik antar peralatan yang menggunakan teknik digital dala pengiriman ataupun penukaran data.
Media Tranmisi pada Physical Layer
Kabel (wire)                                                     
·         Kabel UTP Category 3 (Cat3) :  kabel UTP dengan kualitas transmisi yang lebih baik dibandingkan dengan kabel UTP Category 2 (Cat2), yang didesain untuk mendukung komunikasi data dan suara pada kecepatan hingga 10 megabit per detik.
·         Kabel UTP  Category 5 (Cat5) : kabel dengan kualitas transmisi yang jauh lebih baik dibandingkan dengan kabel UTP Category 4 (Cat4), yang didesain untuk mendukung komunikasi data serta suara pada kecepatan hingga 100 megabit per detik.
·         Kabel Coaxial : suatu jenis kabel yang menggunakan dua buah konduktor. Kabel ini banyak digunakan untuk mentransmisikan sinyal frekuensi tinggi mulai 300 kHz keatas. Karena kemampuannya dalam menyalurkan frekuensi tinggi tersebut, maka sistem transmisi dengan menggunakan kabel koaksial memiliki kapasitas kanal yang cukup besar.
·         Kabel Fiber Optik : saluran transmisi yang terbuat dari kaca atau plastik yang digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Berdasarkan mode transmisi yang digunakan serat optik terdiri atas Multimode Step Index, Multimode Graded Index, dan Singlemode Step Index.
Wireless
·         Transmisi radio : media transmisi yang dapat digunakan untuk mengirimkan suara ataupun data. Kelebihan transmisi gelombang radio adalah dapat mengirimkan isyarat dengan posisi sembarang (tidak harus lurus) dan dimungkinkan dalam keadaan bergerak.
·         Transmisi Microwave : Gelombang mikro (microwave) merupakan bentuk radio yang menggunakan frekuensi tinggi (dalam satuan gigahertz), yang meliputi kawasan UHF, SHF dan EHF.
Jika terjadi trouble dalam jaringan langkah atau urutan keberapa physical layer akan di check?
Jika jaringan mengalami gangguan (troubleshoot) maka kita akan mengecek pada lapisan terbwah dalam tingkatan OSI Layer, layer pertama yang harus kita cek pertama kali yaitu physical layer, karena physical layer merupakan pintu gerbang terluar ketika sebuah sistem jaringan terbentuk yang menjadi jembatan komunikasi antara jaringan yang satu dengan jaringan yang lainnya, yang mana dalam physical layer berarti kita mengecek layer fisik yang kita gunakan terlebih dahulu, seperti pengkabel dan lain-lain.
Jadi ketika layer pertama yaitu phsical layer selesai dicek maka kita bisa naik kelayer berikutnya untuk bisa memecahkan masalah, jika kita tidak menemukan masalah dalam physical layer ini.
5. ADSL, SDSL, Hotspot, Wifi
a. ADSL
Modem ADSL atau modem DSL adalah perangkat yang digunakan untuk menghubungkan komputer atau router ke saluran telepon, untuk menggunakan layanan ADSL. Layaknya jenis modem lainnya, modem ADSL merupakan transceiver. Disebut juga dengan DSL Transceiver atau ATU-R. Singkata NTBBA (Network Termination Broad Band Adapter, Network Termination Broad Band Acces) juga acapkali ditemui di beberapa negara.
Beberapa modem ADSL juga mengelola dan membagi sambungan dari layanan ADSL dengan beberapa komputer. Dalam hal ini, modem ADSL berfungsi sebagai DSL router atau residential gateway. Blok di dalam DSL router ada yang bertugas dalam proses framing, sementara blok lainnya melakukan Asynchronous Transfer Mode Segmentation and Reassembly, IEEE 802.1D bridging dan atau IP routing. Antarmuka yang umum dijumpai pada ADSL modem adalah Ethernet dan USB. Meskipun modem ADSL bekerja dalam modus bridge dan tidak membutuhkan IP address publik, modem ADSL tetap disertai IP address untuk fungsi managemen seperti alamat IP 192.168.1.1.
Physical layer dalam ADSL yaitu sistem penyambungan modem ADSL antara modem dengan telphone dengan menggunkan port kabel RJ11 dan penyambungan antara modem ADSL dengan switch menggunakan port kabel RJ45. Intinya phsical layer pasti dibutuhkan dan sangat vital peranannya pada device ini.
b. SDSL
Symmetric Digital Subscriber Line (SDSL)  Dalam arti yang lebih luas itu adalah kumpulan teknologi akses Internet berdasarkan DSL yang menawarkan simetris bandwidth yang hulu dan hilir . Hal ini dianggap lawan dari asymmetric digital subscriber line (ADSL) teknologi dimana bandwidth hulu lebih rendah dari bandwidth hilir. Dalam arti sempit SDSL adalah varian DSL tertentu yang mendukung data hanya pada satu baris dan tidak mendukung panggilan analog. SDSL merupakan sebuah teknologi yang memungkinkan lebih banyak data untuk dikirim melalui kabel telepon tembaga yang ada ( POTS ). SDSL mendukung kecepatan data hingga 3 Mbps . SDSL disebut simetris karena dia mendukung besaran data yang sama untuk lalu lintas hulu dan hilir. SDSL bekerja dengan mengirimkan digital pulsa di daerah frekuensi tinggi dari kabel telepon dan tidak dapat beroperasi secara simultan dengan koneksi suara melalui kabel yang sama.
Hampir mirip dengan ADSL tetapi dengan jenis dan definisi yang berbeda. Physical layer pada peralatan ini digunakan pada penyambungannya keperangkat lain yang sama dengan fungsi ADSL yang telah dijelaskan diatas.

c. HotSpot
HotSpot adalah tempat-tempat tertentu (biasanya tempat umum) yang memiliki layanan internet dengan menggunakan teknologi Wireless LAN, seperti pada perguruan tinggi, mal, plaza, perpustakaan, restoran ataupun bandar udara.
Jelasnya, Hotspot adalah lokasi di mana user atau kita dapat mengakses WiFi melalui mobile computer (seperti laptop atau PDA) tanpa mengguakan koneksi kabel (wireless) dengan tujuan suatu jarigan seperti internet.
Pada umumnya peralatah Hotspot wi-fi menggunakan standardisasi WLAN IEEE 802.11b atau IEEE 802.11g.[1] Teknologi WLAN ini mampu memberikan kecepatan aksesyang tinggi hingga 11 Mbps (IEEE 802.11b) dan 54 Mbps (IEEE 802.11g) dalam jarak hingga 100 meter.
d. WiFi
Wifi adalah sebuah teknologi terkenal yang memanfaatkan peralatan elektronik untuk bertukar data secara nirkabel (menggunakan gelombang radio, wireless) melalui sebuah jaringan komputer, termasuk koneksi Internet berkecepatan tinggi.
Istilah Wi-Fi, pertama dipakai secara komersial pada bulan Agustus 1999, dicetuskan oleh sebuah firma konsultasi merek bernama Interbrand Corporation. Wi-Fi Alliance mempekerjakan Interbrand untuk menentukan nama yang “lebih mudah diucapkan daripada ‘IEEE 802.11b Direct Sequence’”.
Awalnya WiFi ditujukan untuk pengunaan perangkat nirkabel & Jaringan Area Lokal (LAN), namun saat ini lebih banyak digunakan untuk mengakses internet. Hal ini memungkinan seseorang dengan komputer dengan kartu nirkabel (wireless card) atau personal digital assistant (PDA) untuk terhubung dengan internet dengan menggunakan titik akses (atau dikenal dengan hotspot) terdekat.
Macam-macam physical Layer
a. Layer Data-Link

               Layer ini sedikit lebih “cerdas” dibandingkan dengan layer physical, karena menyediakan transfer data yang lebih nyata. Sebagai penghubung antara media network dan layer protocol yang lebih high-level, layer data link bertanggung-jawab pada paket akhir dari data binari yang berasal dari level yang lebih tinggi ke paket diskrit sebelum ke layer physical. Akan mengirimkan frame (blok dari data) melalui suatu network. Ethernet (802.2 & 802.3), Tokenbus (802.4) dan Tokenring (802.5) adalah protocol pada layer Data-link.
b. Layer Network
         
Tugas utama dari layer network adalah menyediakan fungsi routing sehingga paket dapat dikirim keluar dari segment network lokal ke suatu tujuan yang berada pada suatu network lain. IP, Internet Protocol, umumnya digunakan untuk tugas ini. Protocol lainnya seperti IPX, Internet Packet eXchange. Perusahaan Novell telah memprogram protokol menjadi beberapa, seperti SPX (Sequence Packet Exchange) & NCP (Netware Core Protocol). Protokol ini telah dimasukkan ke sistem operasi Netware. Beberapa fungsi yang mungkin dilakukan oleh Layer Network.
c. Layer Transport
Layer transport data, menggunakan protocol seperti UDP, TCP dan/atau SPX (Sequence Packet eXchange, yang satu ini digunakan oleh NetWare, tetapi khusus untuk koneksi berorientasi IPX). Layer transport adalah pusat dari mode-OSI. Layer ini menyediakan transfer yang reliable dan transparan antara kedua titik akhir, layer ini juga menyediakan multiplexing, kendali aliran dan pemeriksaan error serta memperbaikinya.
d. Layer Session
Layer Session, sesuai dengan namanya, sering disalah artikan sebagai prosedur logon pada network dan berkaitan dengan keamanan. Layer ini menyediakan layanan ke dua layer diatasnya, Melakukan koordinasi komunikasi antara entiti layer yang diwakilinya. Beberapa protocol pada layer ini: NETBIOS: suatu session interface dan protocol, dikembangkan oleh IBM, yang menyediakan layanan ke layer presentation dan layer application. NETBEUI, (NETBIOS Extended User Interface), suatu pengembangan dari NETBIOS yang digunakan pada produk Microsoft networking, seperti Windows NT dan LAN Manager. ADSP (AppleTalk Data Stream Protocol). PAP (Printer Access Protocol), yang terdapat pada printer Postscript untuk akses pada jaringan AppleTalk.


Sumber1
Sumber2
Sumber3
Read more ...

ADSL, SDSL, HOTSPOT, WIFI DAN PENTINGNYA MULTIMEDIA

Kamis, 26 April 2018
A.        ADSL
1.           Pengertian

            Asymmetric Digital Subscriber Line (ADSL) adalah salah satu bentuk dari teknologi digital subscriber line Ciri khas ADSL adalah sifatnya yang asimetrik, sehingga data ditransferkan dalam kecepatan yang berbeda dari satu sisi ke sisi yang lain. Sebelum ADSL, ada sistem yang disebut dial-up. Sistem ini menggunakan sambungan kabel telepon sebagai jaringan penghubung dengan penyelenggara jasa Internet. Namun dalam penggunaannya, dial-up memiliki beberapa kekurangan. Seperti rendahnya kecepatan dalam mengakses Internet, terlebih pada waktu tertentu yang merupakan waktu sibuk atau office hour. Selain itu, karena menggunakan sambungan telepon, kita tidak bisa menggunakan telepon bila sedang melakukan koneksi Internet. Penggunaan sambungan telepon juga memungkinkan tingginya tingkat gangguan atau noise bila sedang menggunakan Internet. Kekurangan lainnya adalah sistem penghitungan tarif dial-up yang masih berdasarkan waktu dan mahal.

            ADSL merupakan salah satu dari beberapa jenis DSL disamping SDSL, HGDSL, IDSL, VDSL dan HDSL. DSL merupakan teknologi akses Internet menggunakan kabel tembaga, sering disebut juga sebagai teknologi suntikan atau injection technology yang membantu kabel telepon biasa dalam menghantarkan data dalam jumlah besar. DSL sendiri dapat tersedia berkat adanya sebuah perangkat yang disebut digital subscriber line access multiplexer. Untuk mencapai tingkat kecepatan yang tinggi, DSL menggunakan sinyal frekuensi hingga 1 MHz. Lain halnya untuk ADSL, sinyal frekuensi yang dipakai hanya berkisar antara 20 KHz sampai 1 MHz. Sementara untuk penggunaan ADSL di Indonesia seperti Speedy, kecepatan yang ditawarkan berkisar antara 1024 kbps untuk downstream dan 128 kbps untuk upstream. Kecepatan downstream inilah yang menjadikan ADSL lebih cocok untuk penggunaan pribadi. umumnya, pengguna pribadi lebih banyak kegiatan menerima, dibandingkan kegiatan mengirim. Seperti mengunduh data, gambar, musik, ataupun video.

2.         Karakteristik

            Penghala dengan Wi-Fi yang biasa digunakan untuk jaringan wilayah lokal dengan koneksi ASDL. ADSL memiliki bermacam-macam kecepatan akses, tergantung jenis router, USB, dan perangkat lain yang ada di dalamnya. Misalnya ada yang dapat dipakai untuk dua komputer dengan menggunakan sambungan USB, tetapi ada juga yang dapat digunakan untuk empat komputer dengan koneksi LAN. Lebih baik memilih modem ADSL yang terdapat tombol on dan off, supaya dapat mengatur penggunaan koneksi sebanyak yang kita butuhkan dan menghemat biaya koneksi yang digunakan. Terlebih di Indonesia masih menggunakan penghitungan waktu atau banyaknya bandwidth yang digunakan.

Hal penting lain yang dimiliki oleh modem ADSL adalah adanya lampu indikator yang berguna mengetahui jalannya proses koneksi yang terjadi. Umumnya lampu yang ada pada modem ADSL adalah lampu PPP, power, dan DSL. Ada juga lampu tambahan bila kita menggunakan koneksi Ethernet dan USB.

Penggunaan ADSL di Indonesia saat ini tidak hanya berkisar hanya di pulau Jawa, tetapi sudah meluas ke penjuru wilayah Indonesia. Walaupun kualitas yang ditawarkan masih banyak mengalami masalah. Dengan adanya ADSL dalam akses Internet, ini sangat membantu dibandingkan dengan cara lama yang menggunakan sistem dial-up.

3.         Kelebihan
Pembagian frekuensi menjadi dua, yaitu frekuensi tinggi untuk menghantarkan data, sementara frekuensi rendah untuk menghantarkan suara dan faksimile.
Bagi pengguna di Indonesia yang menggunakan layanan Speedy, ADSL membuat akses Internet menjadi jauh lebih murah. Akses Internet tanpa khawatir dengan tagihan yang tidak sesuai yang diharapkan.

4.         Kekurangan
Berpengaruhnya jarak pada kecepatan pengiriman data. Semakin jauh jarak antara modem dengan komputer, atau saluran telepon kita dengan digital subscriber line access multiplexer yang terdapat di gardu telepon, maka semakin lambat pula kecepatan mengakses Internet.
Penggunaan kabel tembaga masih dominan digunakan, karena kabel serat optik masih belum merata digunakan. Hal ini menjadi akses Internet belum maksimal seperti yang diharapkan untuk penggunaan data saat ini.

B.        SDSL

1.            Pengertian
            SDSL (Symetrical Digital Subscriber Line) merupakan jenis lain dari HDSL. SDSL hanya memerlukan sepasang kawat saluran saja untuk menyalurkan POTS dan T1/E1. Kelebihan utama SDSL dibandingkan denganHDSL adalah mudah diterapkan di setiap pelanggan karena hanya memerlukan satu saluran telepon biasa.

Biasanya, layanan DSL adalah asimetris (ADSL), dengan sebagian besar bandwidth yang disediakan untuk menerima data, tidak mengirimnya. Layanan SDSL biasanya digunakan oleh perusahaan dengan kehadiran kebutuhan Web, VPN, extranet atau intranet. Dalam kasus ini client server mungkin diperlukan untuk meng-upload sejumlah besar data ke Internet secara teratur. ADSL akan lambat dan tidak memadai untuk tujuan ini, karena bandwidth yang tersedia untuk upload biasanya kurang dari 1 megabit per detik (mbps). Bandwidth yang SDSL bisa setinggi 7 mbps di kedua arah.
Sebuah penawaran penyedia layanan SDSL menawarkan nilai yang berbeda untuk berbagai harga. Semakin cepat laju data, semakin mahal harga layanannya. Biasanya, kontrak jangka panjang yang diperlukan untuk layanan SDSL terlepas dari kelas yang dipilih. SDSL menggunakan frekuensi digital dalam perjalanan lintas telepon untuk mengirim dan menerima data. Bila menggunakan saluran telepon untuk SDSL, line telepon dan faks harus dihentikan. Oleh karena itu line khusus, atau tambahan diperlukan untuk layanan SDSL. Ini berbeda dari ADSL, yang “menyisakan ruang” untuk kedua peralatan telepon analog standar dan sinyal digital, sehingga seseorang dapat berbicara di telepon atau menggunakan mesin fax saat online.

2.         Kelebihan

·         Bandwidth yang disalurkan simetrik dalam artian kecepatan upload dan download sama sesuai paket layanan yang pelanggan pilih sebelumnya.
·         Delay rendah.
·         Tidak bergantung dan tidak menggangu pada saluran telepon yang ada.
·         Sistem point to point antara ISP dengan Pelanggan, sehingga secara teknis bandwidth tidak terbagi (ini juga tergantung kebijakan dari ISPnya).

3.      Kekurangan
·         Jika tidak menggunakan sistem anti petir (grounding -red) yang baik maka akan boros modem (terkena petir terus).
·         Kabel diputus orang lain.
·         Modemnya lebih mahal dari modem ADSL.
·         Hanya dapat digunakan pada saluran sepanjang 10 kft.

C.        HOTSPOT

1.         Pengertian

Hotspot merupakan Bisnis Internet BroadBand yang banyak di minati semua kalangan saat ini. Membangun hotspot adalah suatu konsep dimana beberapa komputer dalam suatu perumahan atau blok dapat saling berhubungan dan dapat berbagi data serta informasi. Konsep lain dari hotspot adalah memberdayakan pemakain internet dimana fasilitas internet tersedia selama 24 jam sehari selama sebulan agar biaya yang akan dikeluarkan akan murah. Karena semua biaya pembangunan infrastruktur, operasional dan biaya langganan akan ditanggung bersama. Konsep hotspot sebetulnya sama dengan konsep Warnet, pemilik warnet akan membeli atau menyewa pulsa atau bandwith dari penyedia internet / ISP (Internet Service Provider) misalkan Telkom, Indosat atau Indonet, lalu dijual kembali ke pelanggan yang datang menyewa komputer untuk bermain internet baik untuk membuka Email, Chating, Browsing, Main Game dll.

2.         Cara Kerja Hotspot
Merupakan perangkat memancarkan gelombang radio yang akan ditangkap oleh laptop atau personal digital assistant (PDA) milik pengguna yang telah dilengkapi teknologi Wi-Fi. ''Apabila pengguna membuka browser internetnya dalam kawasan hotspot, maka akan muncul halaman utama hot spot penyedia layanan. Kemudian pengguna harus memasukkan username dan login password-nya. Setelah proses verifikasi selesai, pengguna terhubung ke dunia maya.

3.         Jenis-Jenis Hotspot
Ada beberapa jenis Hotspot di area-area tertentu yang biasa anda gunakan, diantaranya:
-      
      Free Hotspot

Ini merupakan jenis hotspot dimana publik dapat mengakses jaringan dengan bebas. Fasilitas free hotspot biasanya disediakan sebagai fasilitas tambahan untuk pelanggan hotel, Cafe dan usaha-usaha lainnya. Free hotspot juga kadang dipasang semi permanen di acara pameren komputer atau konferensi/seminar komputer.

Pada kasus ini, admin sebagai orang yang mengontrol jaringan menonaktifkan persyaratan otentikasi (authentication requirements) dan membuka koneksi jaringan sehingga siapapun bisa mengakses jaringan tersebut.

-          Hotspot Berbayar

Untuk menggunakan Hotspot Berbayar, Anda harus membayar sewa hotspot langsung ke pemilik gedung, biasanya di ruangan hotel, restoran, atau kedai kopi. Tidak semua Hotel, Cafe atau perusahaan mampu memberikan layanan internet secara gratis. Karena itulah, mereka biasanya mengambil kebijakan untuk menyediakan layanan hotspot berbayar kepada pengguna untuk menutupi biaya layanan internet yang mereka sewa dari Internet Service Provider (ISP).

-          Hotspot Berbayar ke Operator WiFi Hotspot

Jenis Hotspot berbayar ini seperti Boingo, iPASS Operator WiFi HotSpot ini merupakan jaringan internasional yang memiliki banyak pengguna mobile secara internasional. Jenis HotSpot ini biasanya sangat diminati oleh orang-orang yang sering bepergian jauh bahkan ke luar negeri seperti traveler atau pengusaha yang sering melakukan bisnis di luar negeri.

D.        WIFI (WIRELESS)

1.         Pengertian

Wifi merupakan kependekan dari Wireless Fidelity yaitu sebuah media penghantar komunikasi data tanpa kabel yang bisa digunakan untuk komunikasi atau mentransfer program dan data dengan kemampuan yang sangat cepat. Kenapa bisa cepat? Karena media penghantarnya menggunakan sinyal radio yang bekerja pada frekwensi tertentu. Area jangkauannya dapat berjarak dari ruangan kelas ke seluruh kampus atau dari kantor ke kantor yang lain dan berlainan gedung. Peranti yang umumnya digunakan untuk jaringan Wireless termasuk di dalamnya adalah PC, Laptop, PDA, telepon seluler, dan lain sebagainya. Teknologi Wireless ini memiliki kegunaan yang sangat banyak. Contohnya, pengguna mobile bisa menggunakan telepon seluler mereka untuk mengakses e-mail. Sementara itu para pelancong dengan laptopnya bisa terhubung ke internet ketika mereka sedang di bandara, kafe, kereta api dan tempat publik lainnya.

Untuk masalah frekwensi kerja dari sebuah berdasarkan standard dari IEEE (Electrical and Electronis Engineers), itu dibagi menjadi empat bagian yaitu :
802.11b 11 Mb/s 2.4 GHz B
802.11a 54 Mb/s 5 GHz A
802.11g 54 Mb/s 2.4 GHz b, g
802.11n 100 Mb/s 2.4 GHz b, g, n

Jenis “b” merupakan produk Wi-Fi yangpertama. Sedangkan type  “g” dan “n” adalah salah satu produk yang memiliki penjualan palingbanyak diminati masyarakat  pada sekitar tahun2005. Berdasarkan bentuk fisiknya, wi-fi dibedakan menjadi dua yaitu :
Bentuk PCI
Bentuk USB

Jenis PCI biasanya digunakan pada sebuah PC (personal computer), sedangkan untuk jenis usb penggunaannya lebih portabel bisa untuk laptop ataupun PC. Hal ini dikarenakan didesain dengan jenis colokan USB. Sehingga lebih memudahkan pengguna. Setiap teknologi pasti ada kelebihan dan kelemahan yang ditawarkan kepada pengguna, untuk teknoologi wireless mempunyai kelebihan dan kelemahan antara lain :

2.         Kelebihan
Kelebihan yang ditawarkan wireless :


  • Mobilitas

Bisa digunakan kapan saja dan kemampuan akses data pada jaringan wireless itu real time, selama masih di area hotspot.


  • Kecepatan Instalasi

Proses pemasangan cepat dan tidak perlu menggunakan kabel.


  • Fleksibilitas Tempat

Bisa menjangkau tempat yang tidak mungkin dijangkau kabel.


  • Jangkauan luas

Biaya pemeliharannya murah (hanya mencakup stasiun bukan seperti pada jaringan kabel yang Mencakup keseluruhan kabel).
  • Infrastrukturnya berdimensi kecil.
  • Mudah & murah untuk direlokasi dan mendukung portabelitas.


3.      Kekurangan
 Kekurangan teknologi wireless.

  • Transmit data kecil, sedangkan jika menggunakan kabel akan lebih cepat.
  • Alatnya cukup mahal.
  • Mudah terjadi gangguan antara pengguna yang lain (Interferensi Gelombang).
  • Kapasitas jaringan terbatas.
  • Keamanan data kurang terjamin.
  • Intermittence (sinyal putus-putus).
  • Mengalami gejala yang disebut multipath yaitu propagasi radio dari pengirim ke penerima melalui banyak jalur yang LOS.
  • Mempunyai latency yang cukup besar dibandingkan dengan media transmisi kabel.


Pentingnya Multimedia Dalam Lingkungan Rumah

        Multimedia adalah media yang menggabungkan dua unsur atau lebih media yang terdiri dari teks, grafik, gambar, foto, audio, dan animasi secara terintegrasi. Multimedia terbagi menjadi dua kategori, yaitu: multimedia linear, dan multimedia interaktif. Multimedia linear adalah suatu multimedia yang tidak dilengkapi dengan alat pengontrol apapun yang dapat dioperasikan oleh pengguna. Multimedia ini berjalan sekuensial (berurutan), contohnya TV dan film.Multimedia interaktif adalah suatu multimedia yang dilengkapi dengan alat pengontrol yang dapat dioperasikan oleh pengguna, sehingga pengguna dapat memilih apa yang dikehendaki untuk proses selanjutnya. Contoh multimedia interaktif adalah: multimedia pembelajaran interaktif, aplikasi game dll.Sedangkan pembelajaran diartikan sebagai proses penciptaan lingkungan memungkinkan terjadinya proses belajar. Jadi dalam pembelajaran yang utama adalah bagaimana siswa belajar. Belajar dalam pengertian aktivitas mental siswa dalam berinteraksi dengan lingkungan yang menghasilkan perubahan perilaku yang bersifat relatif konstan. Dengan demikian aspek yang menjadi penting dalam aktivitas belajar dan pembelajaran adalah lingkungan. Bagaimana lingkungan ini diciptakan dengan menata unsur-unsurnya sehingga dapat merubah perilaku siswa.Dari uraian di atas dapat disimpulkan bahwa multimedia pembelajaran dapat diartikan sebagai aplikasi multimedia yang digunakan dalam proses pembelajaran, dengan kata lain untuk menyalurkan pesan (pengetahuan, ketrampilan dan sikap) serta dapat merangsang pikiran, perasaan, perhatian dan kemauan yang belajar sehingga secara sengaja proses belajar terjadi, bertujuan dan terkendali.

Manfaat Multimedia Pembelajaran
    Secara umum manfaat yang dapat diperoleh adalah proses pembelajaran lebih menarik, lebih interaktif, jumlah waktu mengajar dapat dikurangi, kualitas belajar dapat ditingkatkan, dan proses belajar mengajar dapat dilakukan dimana dan kapan saja, serta sikap belajar siswa dapat ditingkatkan.Sedangkan keunggulan multimedia pembelajarn adalah sebagai berikut.

1. Memperbesar benda yang sangat kecil dan tidak tampak oleh mata, seperti kuman, bakteri, elektron, dan lain-lain.

2. Memperkecil benda yang sangat besar, yang tidak mungkin dihadirkan di sekolah, seperti gajah, rumah, gunung dan lain-lain.

3. Menyajikan benda atau peristiwa yang kompleks, rumit dan berlangsung cepat atau lambat, seperti sistem tubuh manusia, bekerjanya suatu mesin, beredarnya planet Mars, berkembangnya bunga dan lain-lain.

4. Menyajikan benda atau peristiwa yang jauh, seperti bulan, bintang, salju dan lain-lain.

5. Menyajikan benda atau peristiwa yang berbahaya, seperti letusan gunung berapi, harimau, racun dan lain-lain.

6. Meningkatkan daya tarik dan perhatian para pengguna.


Read more ...

POSTER STOP BAHAYA MEROKOK!

Selasa, 20 Maret 2018
Read more ...

KLASIFIKASI PADA ARSITEKTUR KOMPUTER PARAREL DAN MACAM GANGGUAN PADA SISTEM DISTRIBUSI

Sabtu, 23 Desember 2017
Arsitektur Paralel

Paralelisme dalam suatu komputer dapat diaplikasikan pada beberapa tingkatan, seperti berikut:

1. Tingkat pekerjaan: antara pekerjaan-pekerjaan atau fase-fase suatu pekerjaan. Hal ini menjadi prinsip dasar dari multiprogramming.

2. Tingkat prosedur: antara prosedur-prosedur dan di dalam loop. Hal ini harus tercakup sebagai hal yang penting bagi suatu bahasa.

3. Tingkat instruksi: antara fase-fase sebuah siklus instruksi, yaitu fetch, decode dan eksekusi suatu instruksi.

4. Tingkat aritmatika dan bit: antara bit-bit dalam sirkuit aritmatika. Salah satu contohnya adalah adder paralel. Telah banyak usaha untuk mengklasifikasikan perancangan arsitektur komputer paralel. Namun tidak ada satupun yang mampu memisahkan semua jenis perancangan menjadi kelompok-kelompok yang berbeda.

Skema klasifikasi yang paling umum digunakan adalah taksonomi Flynn. Kita akan membahas pula dua skema lainnya yaitu: Shore dan Feng.

Klasifikasi Flynn

Michael J. Flynn memperkenalkan suatu skema untuk mengklasifikasikan arsitektur suatu komputer dengan melihat bagaimana mesinnya menghubungkan instruksi-instruksinya ke data yang sedang diproses. Berikut klasifikasinya:

1. SISD: single instruction stream, single data stream. Merupakan suatu komputer serial konvesional dimana instruksi-instruksi dijalankan satu per satu dan sebuah instruksi tunggal berhubungan dengan paling banyak satu operasi data.

2. SIMD: single instruction stream, multiple data stream. Dalam sebuah komputer SIMD, suatu instruksi tunggal mengawali sejumlah besar operasi.

3. MISD: multiple instruction stream, single data stream. Kelas MISD melaksanakan beberapa operasi instruksi secara bersamaan pada sebuah item data tunggal.

4. MIMD: multiple instruction stream, multiple data stream. Sebuah komputer MIMD dicirikan oleh eksekusi lebih dari satu instruksi pada saat yang bersamaan, dimana setiap instruksi beroperasi pada beberapa aliran data.

Klasifikasi Shore

J.E. Shore membuat klasifikasi arsitektur komputer yang didasarkan pada organisasi bagian-bagian penyusun suatu komputer dan membedakannya menjadi enam jenis mesin.

1. Mesin I. Pada komputer ini, satu instruksi dikerjakan pada suatu waktu dan masing-masing beroperasi pada satu word dalam suatu waktu.

2. Mesin II. Komputer ini juga menjalankan satu instruksi pada suatu waktu, namun ia beroperasi pada sebuah irisan dari suatu bit dalam suatu waktu, bukannya semua bit dalam suatu word data.

3. Mesin III. Sebuah komputer dalam kelas ini memiliki dua unit pengolahan yang dapat beroperasi pada data, satu word dalarn suatu waktu atau suatu irisan bit dalam suatu waktu.

4. Mesin IV. Komputer jenis ini dicirikan oleh sejumlah elemen (unit pengolahan dan unit memori), semua di bawah kendali sebuah unit kendali logika (CLU) tunggal.

5. Mesin V. Mesin V dihasilkan dengan mengubah Mesin IV sedemikian sehingga elemen-elemen pengolahan dapat berkomunikasi dengán tetangga terdekat mereka.

6. Mesin VI. Komputer ini, disebut sebagai array logika-dalam-memori, merupakan sebuah mesin dengan logika prosesor yang tersebar dalam memori.

Klasifikasi Feng

Tse-yum Feng (1972) menyarankan pengklasifikasian arsitektur komputer atas tingkatan paralelisme mereka. Tingkatan paralelisme (degree of parallelism) diwakili oleh pasangan (n, m) dimana n merupakan panjang word dan m adalah panjang irisan bit.
Pasangan ini diklasifikasikan menjadi empat kelompok sebagai berikut:

1. Jika n = 1 dan m = I maka tidak terjadi paralelisme. Word dan bit diproses satu per satuan waktu. Hal ini disebut sebagai word serial/bit serial(WSBS).

2. Jika n> 1 dan m = 1 maka paralelisme itu disebut sebagai word paralel/bit serial (WPBS). Dalam hal ini, semua n irisan bit diproses satu per satuan waktu.

3. Paralelisme word serial/bit paralel (WSBP) terjadi jika n = 1 dan m> 1. Dengan demikian sejumlah n word diproses satu per satuan waktu tetapi sejumlah m bit dan masing-masing word diproses secara paralel.

4. Kategori terakhir disebut sebagai word paralel/bit paralel (WPBP) dan merupakan suatu paralelisme dimana n > 1 dan m > 1. Dalam hal ini, sejumlah nm bit diproses secara bersamaan.

Komputer sekuensial berdasarkan klasifikasi Flynn adalah kelompok komputer SISD  hanya mempunyai satu unit pengendali untuk menentukan instruksi yang akan dieksekusi. Pada setiap satuan waktu hanya satu instruksi yang dapat dieksekusi, dimana kecepatan akses ke memori dan kecepatan piranti masukan dan keluaran dapat memperlambat proses komputasi.

Beberapa metoda dibangun untuk menghindari masalah tersebut, seperti penggunaan cache memory. Namun komputer sekuensial ini tetap mengalami keterbatasan jika menangani masalah yang memerlukan kecepatan tinggi. Hal-hal tersebut di atas pada akhirnya melatarbelakangi lahirnya sistem komputer paralel.

Berdasarkan klasifikasi Flynn, komputer paralel termasuk kelompok SIMD atau MIMD. Komputer paralel mempunyai lebih dari satu unit pemroses dalam sebuah komputer yang sama.

Hal yang membuat suatu komputer dengan banyak prosesor disebut sebagai komputer paralel adalah bahwa seluruh prosesor tersebut dapat beroperasi secara simultan. Jika tiap-tiap prosesor dapat mengerjakan satu juta operasi tiap detik, maka sepuluh prosesor dapat mengerjakan sepuluh juta operasi tiap detik, seratus prosesor akan dapat mengerjakan seratus juta operasi tiap detiknya[Les93].

Pada dasarnya aktivitas sebuah prosesor pada komputer paralel adalah sama dengan aktivitas sebuah prosesor pada komputer sekuensial. Tiap prosesor membaca (read) data dari memori, memprosesnya dan menuliskannya (write) kembali ke memori. Aktivitas komputasi ini dikerjakan oleh seluruh prosesor secara paralel.

Macam-macam Gangguan pada sistem distribusi

1. Gangguan beban lebih

Gangguan ini sebenarnya bukan gangguan murni, tetapi bila dibiarkan terus menerus berlangsung dapat merusak peralatan listrik yang dialiri oleh arus tersebut. Karena arus yang mengalir melebihi dari kapasitas peralatan listrik dan pengaman yang terpasang melebihi kapasitas peralatan, sehingga saat beban melebihi pengaman tidak trip. Misal : kapasitas penghantar 300 A dan pengaman di setting 350 A tetapi beban mencapai 320 A, sehingga pengaman tidak trip dan penghantar akan terbakar.

2. Gangguan hubung singkat

Gangguan hubung singkat, dapat terjadi antar fasa (3 fasa atau 2 fasa) atau 1 fasa ketanah dan sifatnya bisa temporer atau permanen.

Gangguan permanen antara lain :

Gangguan hubung singkat, bisa terjadi pada kabel atau pada belitan transformator tenaga yang disebabkan karena arus gangguan hubung singkat melebihi kapasitasnya, sehingga penghantar menjadi panas yang dapat mempengaruhi isolasi atau minyak transformator, sehingga isolasi tembus. Pada generator yang disebabkan karena adanya gangguan hubung singkat atau pembebanan yang melebihi kapasitas. Sehingga rotor memasok arus dari eksitasi berlebih yang dapat menimbulkan pemanasan yang dapat merusak isolasi sehingga isolasi tembus. Disini pada titik gangguan memang terjadi kerusakan yang permanen. Peralatan yang terganggu tersebut, baru bisa dioperasikan kembali setelah bagian yang rusak diperbaiki atau diganti.

Gangguan temporer, antara lain :

Flashover karena sambaran petir (penghantar terkena sambaran petir), flashover dengan pohon, penghantar tertiup angin yang dapat menimbulkan gangguan antar fasa atau penghantar fasa menyentuh pohon yang dapat menimbulkan gangguan 1 fasa ketanah. Gangguan ini yang tembus (breakdown) adalah isolasi udaranya, oleh karena itu tidak ada kerusakan yang permanen. Setelah arus gangguannya terputus, misalnya karena terbukanya circuit breaker oleh relai pengamannya, peralatan atau saluran yang terganggu tersebut siap dioperasikan kembali.

3. Gangguan Tegangan Lebih
Gangguan tegangan lebih yang diakibatkan adanya kelainan pada sistem, dimana tegangan lebih dibedakan atas :

- Tegangan lebih dengan power frekuensi, misal : pembangkit kehilangan beban yang diakibatkan adanya gangguan pada sisi jaringan, sehingga over speed pada generator, tegangan lebih ini dapat juga terjadi adanya gangguan pada pengatur tegangan secara otomatis (Automatic Voltage Regulator).

- Tegangan lebih transient karena adanya surja petir (lightning surge) yang mengenai peralatan listrik atau saat pemutus (PMT) yang menimbulkan kenaikan tegangan yang disebut surja hubung (switching surge).

4. Gangguan Ketakstabilan (Instability)

Gangguan hubung singkat atau lepasnya pembangkit, dapat menimbulkan ayunan daya (power swing) atau menyebabkan unit-unit pembangkit lepas sinkron, ayunan dapat menyebabkan salah kerja relai. Lepas sinkron dapat menyebabkan berkurangnya pembangkit, karena tripnya pembangkit yang besar dari spinning reserve, maka frekuensi akan terus turun atau terpisahnya sistem yang selanjutnya dapat menyebabkan gangguan yang lebih luas bahkan sistem terjadi keruntuhan (collapse).

Sumber  "MARSUDI, DJITENG.,” Operasi Sistem Tenaga Listrik “, Yogyakarta, Graha Ilmu, 2006"
Read more ...

Prinsip Pipelining Secara Umum

Sabtu, 23 Desember 2017
PIPELINING

Telah lama diketahui bahwa membaca instruksi dari memori merupakan hambatan utama dalam hal kecepatan untuk menjalankan suatu instruksi. Untuk mengatasi masalah ini, komputer-komputer generasi IBM Stretch (1959) telah memiliki kemampuan untuk mengambil terlebih dahulu instruksi-instruksi dari memori sehingga instruksi-instruksi tersebut akan selalu siap ketika mereka dibutuhkan. Instruksi-instruksi ini disimpan dalam sekumpulan register yang disebut penyangga prabaca. Dengan cara ini, ketika sebuah instruksi dibutuhkan, instruksi tersebut biasanya dapat segera diambil dari penyangga prabaca daripada menunggu sebuah memori membaca hingga selesai. Oleh karena itu, sistem prabaca membagi pelaksanaan instruksi menjadi bagian: membaca dan pelaksanaan aktual. Konsep pipeline menjelaskan strategi lebih jauh. Pelaksanaan instruksi sering dibagi ke dalam banyak bagian dan bukan hanya ke dalam dua bagian saja, di mana masing-masing bagian ditangani oleh seperangkat hardware khusus, dan keseluruhan bagian tersebut dapat beroperasi secara paralel.

Teknologi pipeline yang digunakan pada komputer bertujuan untuk meningkatkan kinerja dari komputer. Atau secara sederhana, pipeline adalah suatu cara yang digunakan untuk melakukan sejumlah kerja secara bersamaan tetapi dalam tahap yang berbeda yang dialirkan secara kontiniu pada unit pemrosesan. Dengan cara ini, maka unit pemroses selalu bekerja.

Cara kerja masing-masing unit pada pipeline

1 mengambil instruksi dari memori dan menempatkan instruksi tersebut dalam sebuah penyangga sampai instruksi itu dibutuhkan. 
2 mendekodekan instruksi tersebut, menentukan jenisnya dan operand apa yang dibutuhkan instruksi tersebut. 
3 melokasi dan mengambil operand-operand, baik itu dari register-register ataupun dari memori. 
4 sebenarnya melaksanakan pekerjaan menjalankan instruksi tersebut, terutama dengan menjalankan operand-operand melalui jalur data. 
5 menulis hasilnya kembali ke register yang sesuai.

Kita dapat melihat bagaimana pipeline tersebut beroperasi sebagai suatu fungsi waktu. Selama siklus jam (waktu) 1, Sl sedang menangani instruksi 1, dengan mengambilnya dari memori. Selama siklus 2, tahap S2 mendekodekan instruksi 1, sedangkan tahap Sl mengambil instruksi 2. Selama siklus 3, tahap S3 mengambil operand-operand dari instruksi 1, tahap S2 mendekodekan instruksi 2, dan tahap Sl mengambil instruksi ketiga. Selama siklus 4, tahap S4 menjalankan instruksi 1, S3 mengambil operand-operand untuk instruksi 2, S2 mendekodekan instruksi 3, dan Sl mengambil instruksi 4. Terakhir, selama siklus 5, S5 menulis kembali hasil instruksi 1, sementara tahap-tahap lainnya menangani instruksi-instruksi berikutnya.

Mari kita lihat sebuah contoh untuk lebih memperjelas konsep pipeline. Bayangkan sebuah pabrik kue di mana proses pembakaran dan pengemasan kue-kue untuk pengiriman dilakukan secara terpisah. Misalkan bahwa departemen pengiriman memiliki sebuah ban berjalan pembawa panjang dengan lima pekerja (satuansatuan pemrosesan) yang berdiri berjejer sepanjang ban berjalan tersebut. Setiap 10 detik (siklus jam), pekerja 1 menempatkan sebuah kotak kue kosong pada ban tersebut. Kotak tersebut dibawa ke pekerja 2, yang memasukkan sebuah kue ke dalam kotak itu. Sesaat kemudian, kotak tersebut sampai di pos kerja pekerja 3, yang kemudian menutup dan menyegel kotak tersebut. Selanjutnya kotak tersebut diteruskan ke pekerja 4, yang memasang sebuah label pada kotak kue itu. Terakhir, pekerja 5 memindahkan kotak tersebut dari ban dan memasukkannya dalam sebuah kontainer besar untuk kemudian dikirim ke beberapa supermarket. Pada dasarnya, cara kerja seperti ini juga berlaku pada pipelining komputer: Setiap instruksi (kue) melalui beberapa langkah pemrosesansebelum mencapai hasil sempurna pada akhir proses.

Kembali ke pipeline, misalkan bahwa masing-masing tahapan siklus waktu mesin ini adalah 2 nsec. Maka sebuah instruksi membutuhkan siklus waktu 10 nsec untuk menempuh lima tahap pipeline. Sepintas, dengan dibutuhkannya waktu 10 nsec untuk sebuah instruksi, kelihatan bahwa mesin tersebut dapat menjalankan 100 MIPS. Namun sebenarnya mesin tersebut dapat menjalankan instruksi yang lebih besar dari jumlah ini. Pada setiap tahap siklus waktu (2 nsec), satu instruksi baru diselesaikan, sehingga jumlah pemrosesan instruksi yang sebenarnya adalah 500 MIPS, bukan 100 MIPS.

Pipelining memungkinkan terjadinya perimbangan antara latensi (berapa lama waktu yang dibutuhkan untuk menjalankan sebuah instruksi), dan lebar pita processor (berapa banyak MIPS yang dimiliki CPU). Dengan siklus waktu Tnsec, dan tahap-tahap n dalam pipeline, maka latensinya adalah nT nsec dan lebar pitanya adalah 1000/T MIPS (logikanya, karena kita sedang mengukur jumlah waktu dalam nanodetik, maka seharusnya kita mengukur lebar pita CPU dalam BIPS atau GIPS, tapi hal ini tidak dilakukan, jadi kita tidak memilih salah satu dari keduanya).

Teknik pipeline ini dapat diterapkan pada berbagai tingkatan dalam sistem komputer. Bisa pada level yang tinggi, misalnya program aplikasi, sampai pada tingkat yang rendah, seperti pada instruksi yang dijalankan oleh microprocessor.

A. Pipeline Pada Microprocessor

Teknik pipeline yang diterapkan pada microprocessor, dapat dikatakan sebuah arsitektur khusus. Ada perbedaan khusus antara model microprocessor yang tidak menggunakan arsitektur pipeline dengan microprocessor yang menerapkan teknik ini.

Pada microprocessor yang tidak menggunakan pipeline, satu instruksi dilakukan sampai selesai, baru instruksi berikutnya dapat dilaksanakan. Sedangkan dalam microprocessor yang menggunakan teknik pipeline, ketika satu instruksi sedangkan diproses, maka instruksi yang berikutnya juga dapat diproses dalam waktu yang bersamaan. Tetapi, instruksi yang diproses secara bersamaan ini, ada dalam tahap proses yang berbeda. Jadi, ada sejumlah tahapan yang akan dilewati oleh sebuah instruksi.

Misalnya sebuah microprocessor menyelesaikan sebuah instruksi dalam 4 langkah. Ketika instruksi pertama masuk ke langkah 2, maka instruksi berikutnya diambil untuk diproses pada langkah 1 instruksi tersebut. Begitu seterusnya, ketika instruksi pertama masuk ke langkah 3, instruksi kedua masuk ke langkah 2 dan instruksi ketiga masuk ke langkah 1.

Dengan penerapan pipeline ini pada microprocessor akan didapatkan peningkatan dalam unjuk kerja microprocessor. Hal ini terjadi karena beberapa instruksi dapat dilakukan secara parallel dalam waktu yang bersamaan. Secara kasarnya diharapkan akan didapatkan peningkatan sebesar K kali dibandingkan dengan microprocessor yang tidak menggunakan pipeline, apabila tahapan yang ada dalam satu kali pemrosesan instruksi adalah K tahap.

Teknik pipeline ini menyebabkan ada sejumlah hal yang harus diperhatikan sehingga ketika diterapkan dapat berjalan dengan baik. Tiga kesulitan yang sering dihadapi ketika menggunakan teknik pipeline ini adalah : Terjadinya penggunaan resource yang bersamaan, Ketergantungan terhadap data, Pengaturan Jump ke suatu lokasi memori.

Karena beberapa instruksi diproses secara bersamaan ada kemungkinan instruksi tersebut sama-sama memerlukan resource yang sama, sehingga diperlukan adanya pengaturan yang tepat agar proses tetap berjalan dengan benar. Sedangkan ketergantungan terhadap data, bisa muncul, misalnya instruksi yang berurutan memerlukan data dari instruksi yang sebelumnya. Kasus Jump, juga perlu perhatian, karena ketika sebuah instruksi meminta untuk melompat ke suatu lokasi memori tertentu, akan terjadi perubahan program counter, sedangkan instruksi yang sedang berada dalam salah satu tahap proses yang berikutnya mungkin tidak mengharapkan terjadinya perubahan program counter.

Dengan menerapkan teknik pipeline ini, akan ditemukan sejumlah perhatian yang khusus terhadap beberapa hal di atas, tetapi tetap akan menghasilkan peningkatan yang berarti dalam kinerja microprocessor. Ada kasus tertentu yang memang sangat tepat bila memanfaatkan pipeline ini, dan juga ada kasus lain yang mungkin tidak tepat bila menggunakan teknologi pipeline.

B. Arsitektur Superskalar

Derajat konkurensi yang lebih tinggi dapat dicapai jika banyak pipeline instruksi diterapkan pada prosesor. Hal ini berarti digunakannya banyak unit fungsional, menciptakan jalur paralel dimana berbagai instruksi yang berbeda dapat dieksekusi secara paralel. Dengan pengaturan tersebut, maka dimungkinkan untuk memulai beberapa instruksi pada tiap siklus clock. Mode operasi ini disebut eksekusi superscalar. Jika mode ini dapat bertahan dalam waktu yang lama selama eksekusi program, maka instruksi-instruksi yang dilakukan memory dapat dipercepat. Tentu saja, eksekusi paralel harus mempertahankan kebenaran logika program, sehingga hasil yang diperoleh harus sama dengan hasil dari eksekusi serial instruksi program. Banyak dari prosesor performa tinggi saat ini didesain untuk bekerja dengan cara tersebut.

Di sini suatu satuan membaca instruksi tunggal mengambil pasangan-pasangan dari instruksi-instruksi secara bersama dan memasukkan masing-masing pasangan ke dalam pipelinenya sendiri, lengkap dengan ALUnya sendiri bagi operasi paralel. Agar dapat beroperasi secara paralel, kedua instruksi tersebut tidak boleh berebutan dalam menggunakan sumber daya (contoh, register-register), dan salah satu instruksi tidak boleh bergantung pada hasil dari instruksi yang lain. Seperti halnya dengan sebuah pipeline tunggal, begitu pula kompiler harus menjamin situasi ini tetap terjaga (yaitu, hardware tidak memeriksa dan memberikan hasil-hasil yang salah jika instruksi-instruksi tidak sebanding), atau konflik-konflik dideteksi dan dihilangkan selama pelaksanaan dengan menggunakan hardware tambahan.

Meskipun pipeline-pipeline, tunggal atau ganda, sebagian besar digunakan pada mesin-mesin RISC (komputer 386 dan generasi-generasi pendahulunya tidak memiliki pipeline satupun), Intel 486 adalah yang pertama kali mulai memperkenalkan pipeline-pipeline ke dalam CPU-CPUnya. Intel 486 memiliki satu pipeline dan Pentium memiliki dua pipeline lima tahap, meskipun pembagian tugas sebenarnya antara tahap 2 dan tahap 3 (pada gambar di atas yang disebut decode1 dan decode2) sedikit berbeda dibanding dalam contoh kita.

Pipeline utama, yang disebut pipeline u, dapat menjalankan sebuah instruksi Pentium yang selalu berubah-ubah. Pipeline kedua, yang disebut pipeline v, dapat menjalankan hanya instruksi-instruksi integer sederhana (dan juga satu instruksi titik mengambang sederhanaFXCH). Peraturan-peraturan yang rumit menentukan apakah sepasang instruksi sebanding sehingga mereka dapat dijalankan secara paralel. Jika instruksi-instruksi yang berpasangan tidak cukup sederhana atau tidak sebanding, hanya pasangan pertama yang dijalankan (dalam pipeline u). Pasangan kedua kemudian disimpan dan dipasangkan dengan instruksi berikutnya. Instruksi-instruksi selalu dijalankan secara berurutan. Jadi kompiler-kompiler khusus Pentium yang memproduksi pasangan-pasangan instruksi yang sebanding dapat memproduksi program-program yang beroperasi lebih cepat dibanding kampiler-kompiler lama.

Beralih ke empat pipeline dapat dilakukan, namun bila hal ini dilakukan akan menduplikat terlalu banyak hardware. Bahkan, suatu pendekatan berbeda digunakan pada highend CPU. Ide dasarnya adalah untuk memiliki hanya satu pipeline tunggal namun pipeline tersebut memiliki berbagai macam satuan fungsi, seperti ditunjukkan pada Gambar 7.5. Contoh, Pentium III memiliki suatu struktur yang mirip dengan gambar. Istilah arsitektur superskalar ditetapkan bagi pendekatan ini pada 1987 (Agerwala dan Cocke, 1987). Namun sebenarnya pendekatan ini telah digunakan pada komputer CDC 6600 30 tahun sebelumnya. Komputer 6600 ini mengambil sebuah instruksi setiap 100 nsec dan membawa instruksi tersebut ke salah satu dari 10 satuan fungsional untuk dijalankan secara paralel sementara CPU beroperasi untuk mendapatkan instruksi baru.

Yang tersirat dalam ide mengenai prosesor superskalar adalah bahwa tahap S3 dapat mengeluarkan instruksi-instruksi lebih cepat daripada tahap S4 dalam menjalankan instruksi-instruksi tersebut. Jika tahap S3 mengeluarkan sebuah instruksi setiap 10 nsec dan seluruh satuan fungsional dapat melaksanakan tugas mereka dalam 10 nsec, maka tidak lebih dari satu satuan yang akan benar-benar sibuk, terlepas dari ide keseluruhan. Dalam kenyataanya, sebagian besar satuan Fungsional dalam tahap S4 membutuhkan kira-kira lebih dari satu siklus detak untuk menjalankan instruksi-instruksi, dan tentu saja satuan-satuan tersebut adalah satuan-satuan yang dapat mengakses memori atau mengoperasikan aritmetik. Seperti dapat dilihat dari gambar tersebut, ada kemungkinan untuk memiliki berbagai macam ALU pada tahap S4. Permintaan untuk komputer-komputer dengan kecepatan yang lebih tinggi tampaknya sulit dipenuhi. Para astronom ingin mensimulasi apa yang terjadi pada mikrodetik pertama setelah terjadi big bang (dentuman besar), para ahli ekonomi ingin memodelkan perekonomian dunia, dan para remaja ingin memainkan game-game multimedia interaktif 3D melalui internet dengan teman-teman virtualnya. Meskipun CPU-CPU semakin cepat, pada akhirnya mereka akan menemui masalah berkaitan dengan kecepatan cahaya, yang mungkin tetap pada 20 cm/nanodetik dalam kabel tembaga atau serat optik, terlepas dari seberapa pintarnya para insinyur Intel. Demikian pula halnya dengan chip-chip yang berkecepatan tinggi, akan menghasilkan lebih banyak panas; yang penyebaran panas itu sendiri justru merupakan suatu masalah.

Paralelisme instruk silevel sedikit membantu, tapi pipeline dan operasi superskalar jarang memperoleh hasil lebih dari suatu faktor lima atau sepuluh. Untuk memperoleh hasil 50, 100, atau lebih, satus-atunya cara adalah mendesain komputer dengan berbagai macam CPU, untuk itu sekarang kita akan melihat bagaimana sebagian dari CPU-CPU ini diorganisasikan.



Pipeline by Hartanto on Scribd

Sumber
Read more ...

Memori Cache

Senin, 30 Oktober 2017
Pengertian dan Fungsi Cache Memory Pada Komputer

Pengertian dan Fungsi Cache Memory Pada Komputer - Pengertian Cache Memory adalah memory yang berukuran kecil yang sifatnya temporary (sementara). Walaupun ukuran filenya sangat kecil namun kecepatannya sangat tinggi. Dalam terminologi hadware, istilah ini biasanya merujuk pada memory berkecepatan tinggi yang menjembatani aliran data antara processor dengan memory utama (RAM) yang biasanya memiliki kecepatan yang lebih rendah.

Fungsi dari Cache Memory adalah sebagai tempat menyimpan data sementara atau intruksi yang diperlukan oleh processor. Secara gampangnya, cache berfungsi untuk mempercepat akses data pada komputer karena cache menyimpan data atau informasi yang telah di akses oleh suatu buffer, sehingga meringankan kerja processor. Jadi Bisa disimpulkan fungsi cache memory yaitu:

  • Mempercepat Akses data pada komputer 
  • Meringankan kerja prosessor 
  • Menjembatani perbedaan kecepatan antara cpu dan memory utama. 
  • Mempercepat kinerja memory. 

Cara kerja dari Cache Memory
Jika prosesor membutuhkan suatu data, pertama-tama dia akan mencarinya pada cache. Jika data ditemukan, prosesor akan langsung membacanya dengan delay yang sangat kecil. Tetapi jika data yang dicari tidak ditemukan,prosesor akan mencarinya pada RAM yang kecepatannya lebih rendah. Pada umumnya, cache dapat menyediakan data yang dibutuhkan oleh prosesor sehingga pengaruh kerja RAM yang lambat dapat dikurangi. Dengan cara ini maka memory bandwidth akan naik dan kerja prosesor menjadi lebih efisien. Selain itu kapasitas memori cache yang semakin besar juga akan meningkatkan kecepatan kerja komputer secara keseluruhan. Dua jenis cache yang sering digunakan dalam dunia komputer adalah memory caching dan disk caching. Implementasinya dapat berupa sebuah bagian khusus dari memori utama komputer atau sebuah media penyimpanan data khusus yang berkecepatan tinggi.

Implementasi memory caching sering disebut sebagai memory cache dan tersusun dari memori komputer jenis SDRAM yang berkecepatan tinggi. Sedangkan implementasi disk caching menggunakan sebagian dari memori komputer.

Letak Cache Memory di komputer

  • Terdapat di dalam Processor (on chip ),Cache internal diletakkan dalam prosesor sehingga tidak memerlukan bus eksternal, maka waktu aksesnya akan sangat cepat sekali.
  • Terdapat diluar Processor(off chip), Berada pada MotherBoard memori jenis ini kecepatan aksesnya sangat cepat,meskipun tidak secepat chache memori jenis pertama.

Letak Cache Memory
  1. Terdapat di dalam Processor (on chip )
Cache internal diletakkan dalam prosesor sehingga tidak memerlukan bus eksternal, maka waktuaksesnya akan sangat cepat sekali
       2.       Terdapat diluar Processor(off chip)
Berada pada MotherBoard, memori jenis ini kecepatan aksesnya sangat cepat, meskipun tidak secepat chache memori jenis pertama.


Jenis Cache Memory
1.   L1 cache L1 Cache adalah Sejumlah kecil SRAM memori yang digunakan sebagai cache yang terintegrasi menyatu pada prosesor.
  • Berguna untuk menyimpan secara sementara instruksi dan data, dan memastikan bahwa prosesor memiliki supply data yangstabil untuk diproses sementara memori mengambil dan menyimpan data baru.
  • L1 cache (Level 1 cache) disebut pula dengan istilah primary cache, first cache, atau level one cache.
  • transfer data dari L1 cache ke prosesor terjadi paling cepat Kecepatannya mendekati kecepatan register

2.  L2 cache Arti istilah L2 Cache adalah Sejumlah kecil SRAM memori yang berada di motherboard dekat dengan posisi dudukan prosesor.
  •  Berguna untuk menyimpan sementara instruksi dan data, dan memastikan bahwa prosesor memiliki supply data yangstabil untuk diproses sementara memori mengambil dan menyimpan data baru
  • (Level 2 cache) secondary cache, second level cache, atau level two cache.
  • L2 cache memiliki ukuran lbih besar dibandingkan L1 namun kecepatan transfernya sedikit lebih lama dari L1cache.
3. L3 cache jarang sekali ada, hanya ada di komputer tertentu.
  •  Berguna ketika terdapat cache yang hilang ”missing” pada cache L1&L2
  • L3 cache memiliki ukuran lbih besar dibandingkan L1 dan L2 namun kecepatan transfernya lebih lama dari L1cache dan L2 Cache. 
Elemen Cache Memory
-       Fungsi Pemetaan (Mapping) 
  1. Pemetaan blok-blok memori utama ke dalam saluran cache.
  2. Pemetaan Langsung (Direct Mapping)
  3. Pemetaan Asosiatif  (Associative Mapping)
  4.  Pemetaan Asosiatif Set (Set Associative Mapping)
-       Algoritma Penggantian 
Untuk memilih blok data mana yang ada di cache yang dapat diganti dengan blok  data baru
  1. Least Recently used (LRU)
  2. First in first out (FIFO)
  3. Least frequently used (LFU)
  4. Random

Cara Kerja Cache Memori

  1. CPU membaca word memori  
  2. Periksa di Cache Memory
  3. Jika ada akan dikirim ke CPU
  4. Jika tidak ada akan dicari ke Memory Utama 
  5. Dikirim ke Cache Memory lalu dikirim ke CPU
KESIMPULAN
      Karena kecepatan memori utama yang rendah dibandingkan dengan kecepatan prosesor, maka sangat diperluka sekali cache sebagai antisipasi terhadap permintaan data memori yang akan digunakan CPU. Apabila data diambil langsung dari memori utama atau maka akan memakan waktu lama yang menyebabkan dapat membuang waktu dengan menunggu untuk mengskses intruksi dan data pada memory utama.
Maka Cache Memory masih diperlukan sekali oleh komputer.







Cache Memory by Hartanto on Scribd
Read more ...